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The X-ray Diffraction Spikes of Diamond 

BY S. CATICHA-ELLIS AND W. COCHRAN 

Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England 

(Received 15 October 1957) 

The theory of the anomalous X-ray reflexions from certain diamonds is worked out on the as- 
sumption that they are produced by the random occurrence of an abnormal spacing in the [100] 
direction, as suggested by Frank. The calculation is in fair agreement with observed results. The 
defects are found, however, not to be associated with the occurrence of silicon as an impurity in 
diamond, nor has any other plausible explanation of their occurrence been found. 

1. Introduction 

The anomalous X-ray reflexions from certain dia- 
monds have been studied a number of times since 
their discovery by Raman  & Nilakantan (1940), the 
most recently published experimental work being that  
of Hoerni & Wooster (1955). Hoerni & Wooster found 
that  the anomalous reflexions have the form of spikes 
in reciprocal space and that  'in any given reciprocal 
plane parallel to a face (100) the spikes perpendicular 
to that  plane which pass through the various points 
lying in the plane have the same spike magnitude' .  
These relative 'spike magnitudes'  were found to be as 
follows: 

Index h 0 1 2 3 4 5 
ICelative magnitude 0 100 75 5 30 0 ? 

The 010 and 001 spike intensities are similarly cor- 
related with the indices k and 1 respectively. The 
intensity along a spike was found to decrease as R -z'2 
with distance R from the reciprocal-lattice point. 

Attempts to explain the spikes have postulated the 
occurrence of laminar defects with equal frequency on 
the planes (100), (010) and (001). Hoerni & Wooster 
assumed that  planes of carbon atoms occurred with 
an abnormal electron distribution. It  has been shown 
by Frank (1956) that  a segregation of impuri ty atoms 
(probably silicon) on (100) planes is sufficient quali- 
tatively to explain the observations. Frank's  calcula- 
tions for a one-dimensional crystal containing impuri ty 
atoms show that  the occasional occurrence of a unit- 
cell dimension of about four-thirds the normal value 
produces roughly the observed spike magnitudes, 
except that  the calculated intensity is too high for 
h >_ 4. It  was suggested that  a calculation which took 
into account a slight non-uniformity of spacing across 
the area of a segregated sheet would give better agree- 
ment. Frank's  calculations are based on a very 
simplified model, and do not give a relation between 
the absolute intensity of the spikes and the concentra- 
tion of impuri ty  atoms required to produce them. 

We have made a more rigorous calculation of the 
consequences for diffraction of a defect of this kind, 

and have obtained a relation between the spike in- 
tensity and the probabil i ty of occurrence of a defect. 
We have also measured the spike intensity experimen- 
tally, and it appears to be too great to be accounted 
for by a segregation of impuri ty  atoms. Nevertheless, 
the occurrence of a defect of the kind suggested by 
Frank (from whatever cause) gives quite fair agree- 
ment with the observed spike magnitudes and ac- 
counts well for the variation of the intensity of the 
( l l l )  spike with distance from the reciprocal-lattice 
point. 

2. T h e o r y  

We will take the defect to consist of the random 
occurrence (in the [001] direction), with probabili ty 
~, of a unit  cell separated from its neighbour on one 
side by a gap of length d. No assumption is made as 
to the cause of this abnormal spacing, and the possible 
change in scattering factor of atoms in an abnormal 
unit cell is not taken into account. (Frank's calcula- 
tion shows that  near a reciprocal-lattice point the 
intensity depends predominantly on the displacement 
of all subsequent planes by the defect, and not on a 
change in scattering factor at the defect.) Clearly a 
displacement d can occur with equal probabili ty be- 
tween any of four non-equivalent layers of atoms in 
the diamond structure. To simplify the algebra we 
take the displacement as always occurring at the same 
place in the unit  cell, tha t  is, if we label the layers 
0, 1, 2 and 3 the displacement occurs only between 
layers 3 and 0 say. I t  is shown in an Appendix that  
the removal of this restriction does not material ly 
affect results obtained in this section. 

The following treatment  is simply a generalization 
and adaptation of that  of Large (1957), who con- 
sidered the problem of the power spectrum of a random 
sequence of pulses. We do not at first restrict ourselves 
to the kind of defect mentioned above, but assume 
simply that  the average distance between equivalent 
points of successive unit  cells in the z direction is 5~ 
and that  there is a distribution about the average 
governed by some probability function. All unit  cells 
are taken to have the same structure factor F. The 
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crystM is taken to be a rectangular parMlelopiped of 
dimensions Nxa, N~a and Naa. Let ~, ~, ~ be reciprocM- 
space coordinates such tha t  h = 1 corresponds to 

= 1/a. The Fourier transform of the crystal is then 
given by 

a($, ~, C) 
= ~ sin N : ~ a  sin N 2 ~ a  J 3 - :  ) 

s~n z~a s,:n gv/a ~ : exp (2ziSd,)_, (1) 

where d~ is the distance from the crystal origin to the 
origin of the nth unit cell along the z axis. 

Therefore we have 

]G[ ~ = .F2 (sin__N_ ~g~a sin__N2~a]2 
\ sin :~a sin mla / 

{Na+ (Na-1)  exp [2~i$5] exp [2~i$e,] 

+ (N~-2) exp [4zi~5] exp [2zi~(e,~+en+~)] 

+etc.  + complex conjugate}, (2) 

where we have written dn+:-d n = 5+en, and the bar 
denotes an average over all values of n. Except for 
a perfect crystal, for which e~ = O, we can approx- 
imate by putt ing all factors (N a -  1), (Na-2)  etc. equal 
to N a. We also note that  

exp [2~i$e,,] = exp [2~i$e] de, (3) 

where p(e) is the probability distribution function 
governing the variation in spacing. Equation (3) is 
thus the Fourier transform of p(e), for which we write 
q(~). Furthermore 

exp [2zd¢(sn+en+~+... +en+m)] = q(¢)m+l. (4) 

Writing K ~ as an abbreviation for 

( sin N l ~ a  sin N2mla/2 
• 

and Q(¢ )=  q(~-)exp [2~i~5], we thus have 

IG]2 = K~F~Na{I+Q(¢)+Q(¢)2+... 
+ Q * ( ¢ ) + Q . ( $ ) 2 + . . . }  

1 - Q Q *  ~ . 
= K2F2Na (1 + Q Q * - Q - Q * ]  (5) 

Returning now to the particular situation where there 
is a probability c~ of a spacing a+d ,  and ( l - a )  of a 
spacing a, we have 

5 = a + a 3  

and p(s) consists of a peak of weight o¢ at a+(~-5 ,  
plus a peak of weight ( l - a )  at a - 5 .  Therefore, 

q($) = a exp [2~i(1-a),d$] + ( l - a )  exp [ - 2 z i a d ~ ]  (6) 

and 

Q(~) = a exp [ 2 ~ i ( a + d ) $ ] + ( 1 - a ) e x p  [2~ia~]. (7) 

Hence 

Q+Q* = 2 ( 1 - ~ )  cos 2~a~+2a  cos 2g (a+d)~ ,  
QQ* = 1 - 4 ~ ( 1 - a )  sin ~" x~d~, 

and, therefore, 

I G] 2 = 4F~K2Ns ~ (1 - o¢) sin e aS~ 
4 sin 2 ga~+ 2~ (cos 2~a~--cos 2~ (a+ 8)~)" 

- - 4 a ( 1 - a )  sin 2 gd~ 

(8) 

Since in practice c~ < 1, we may  write 

IGI2 = 2, 2 (sin N l ~ a  sin _N2~la~ °- Ns~ sin 9" ~ ¢  
(9) 

Equation (9) represents spikes of intensity at those 
reciprocal-lattice points for which F ~ #  0, with in- 
tensity falling off approximately as the square of the 
distance from a reciprocal-lattice point, and with 
relative spike magnitudes 0, sin 2 s6/a, sin ~" 27~/a, etc. 
In this last respect our result agrees with tha t  of 
Frank, who shows tha t  5/a = 0.35 gives fair agree- 
ment with observation. 

To relate this result to an experimental situation, 
we consider Fig. 1. Reference to James (1948)will 

Direct 
beam 

Fig. 1. Intersection of 'spike' by the reflecting circle. 

show that  the flux of intensity when the reflecting 
sphere intercepts a spike as shown, is 

J = Jo \ ~ /  ~ IG(@$)l~d~d~], (lo) 

where A allows for absorption of radiation in the crystal, 
B is the polarization factor, 2 is the wavelength, 
v is the angle shown in Fig. 1, and J0 is the incident 
intensity per unit area. 

Thus 
( e 2 )  2 AB2  2 sin2~c~ 

J = Jo ~ ~-i~os- ~ N:N2N3F 2 oc ~2R2 (11) 

We have written sin 2 ~ a -  (~R) 2, where R is dis- 
tance from a reciprocal-lattice point such tha t  ~ = 
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(1 + R)/a. Int roducing the crystal  volume V = N1N2N 3 a 3 
and the unit-cell  volume v, we have f inal ly  

( e 2 ~2 ABa~2F2V~ sin 9. ~r~ (12) 
J = Jo \~-~c 2] v2~gR ~ cos v 

For  a mosaic crystal  rota ted with angular  velocity o~ 
so tha t  a reciprocal-lattice point  passes through the 
reflecting sphere, the total  energy reflected is 

( C ~2AB~.3F2V 
E = Jo \~--cc~./ ~-~v2 s - ~  • (13) 

From the ratio J / E  the  value of c~ can be found. 
F ina l ly  in this section on theory  we consider the 

effect of 'uneven-ness '  in the abnormal  spacing. The 
simplest  model consists in having  the displacement  
dis t r ibuted normal ly  about  6 wi th  s tandard  deviat ion 
A. I t  is then readi ly  shown from the general theory 
given above tha t  the result  corresponding to (7) is 
n o w  

Q($) = c~ exp [-2~2/1252] exp [2~i(a+d)~] 

+(1-c~)  exp [2zia~] .  (14) 

The relative spike in tens i ty  varies as 1-QQ*,  which 
in this case is approximate ly  proport ional  to 

1-exp [ -2~232~ 2] cos 2~r5~. (15) 

By  choosing appropriate  values for ~ and A one can 
fit  the observed relat ive magni tudes  only a li t t le bet ter  
t han  with the funct ion sin 2 ~d$. Equa t ion  (15) pre- 
dicts tha t  for large values of ~ (i.e. of the index l) 
the spikes become of equal  magni tude.  No measure- 
ments  are available beyond 1 = 5; those beyond 1 = 3 
ra ther  suggest tha t  the spike magni tude  decreases to 
zero for large values of 1. 

3. Comparison witb experiment 

An octahedral  d iamond exhibi t ing strong spikes was 
set with [110] vertical,  and the in tens i ty  of the spikes 
in the zero layer  was measured at various distances 

R from (111), using a Geiger counter. The integrated 
in tens i ty  of the (111) reflex\on was measured,  bu t  
since it  was suspected tha t  this  would be reduced by  
extinction, the integrated in tens i ty  of the (200) re- 
flexion from a small  crystal  of LiH,  known to be free 
from extinction,  was also measured. Using subscripts 
D and  L to denote the d iamond and l i th ium hydr ide  
crystals respectively, we have, from (12) and (13), 

J____~_D = aDo~CO sin 20 sin 2 ~r~(~ ADBDF~VI)V2L. (16) 
EL ~2R2~ cos v ALBLF~VLV~ 

The following are the appropriate  numerical  values:  

aa  = 3.57 A F D = 18"0 
= 1 .54  ~_ F L  = 8-7 

VD = 0-125 ram. a AD = 0"45 
VL = 0.12 ram. a AL = 1-0 
vD = 46 A a B~ ---- B L 

vL = 6 8 A  a sin 2 0 =  0.70 
09 = 0.087 rad.min.  -1 cos v = 0.97 

For dla = ½, sin 2 7u~la = 0.75. Wi th  foils to reduce 
the in tens i ty  by  a factor 2 e, 800 counts were recorded 
per run of the L i H  crystal  through the reflecting 
position. This should be increased by 15% to allow 
for lost counts, giving Ez  = 5.9 × 104 counts. Equa- 
t ion (14) then  gives a ~ 3.6×10-4JR 2, where J is 
measured in counts per minute .  This result  is ap- 
proximate  in tha t  the values of 2 ,2 and of sin 2 ~r~6 
have been taken to be constant  and equal  to their  
values at ~ =  1/a (or R = 0 ) .  In  working out the 
values of a given in Table 1 a correction has been 
made  for these factors, taking d/a = ½. The var ia t ion 
of cos v is very  little. 

Values of J were recorded on a background of 370 
counts rain. -1, so the s tandard  deviat ion of a for the 
highest  values of R is about  50%. Nevertheless,  
there is a possible lack of agreement  with the theory  
for [Rl > 0.1. For smaller  values of IR[, sat isfactori ly 
constant  values of o¢ are obtained, and we m a y  take 

= 1.1 × 10 -3, with a s tandard  deviat ion certainly less 
than  20 %. (About half  this value for ~ was given by  

1 

< 
< 

(a) (b) (c) 

Fig. 2. (a) Normal  a r rangement  of bonds in d iamond.  The two a toms shown as near ly  coincident  are respect ively above and  
below the  plane of the diagram. (b) P roduc t ion  of a d isplacement  0.35a by  in t roducing  an  ex t ra  layer  of carbon a toms,  wi th  
the  fo rmat ion  of double bonds.  (c) P roduc t ion  of a displacement  0.7a by  in t roducing  two ex t ra  layers of carbon atoms.  

A C 11 18 
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Table 1 
Relative Relative 

V a l u e  J v a l u e  of v a l u e  of 
of  R ( c o u n t s  mi l l .  -1)  F ~ s in  ~ ½n(1 ÷ R )  a X 10 a 

- -  0"2 58 0"84 0"73 1"36 
- -0"18  93 0"87 0-76 1"64 
- -0"16  114 0"90 0"80 1 '44 
- -0"14  131 0"93 0-83 1"20 
- -0"12  193 0"96 0"86 1"21 
- -0"10  263 0-98 0-89 1"12 
- - 0 - 0 9  345 0"99 0-90 1"13 
- -0"08  452 0"99 0"91 1"15 
- -0"07  638 1"0 0"93 1"22 
- -0"06  854 1"0 0"94 1"18 
- -0"05  1230 1"0 0-95 1 '16 
- -0"045  1475 1"0 0"96 1"12 

0.0 - -  1-00 1.00 - -  

0 . 0 4 5  1624 0.98 1.05 1.13 
0.05 1329 0.97 1.06 1.18 
0-06 811 0.95 1.07 1.03 
0-07 558 0.93 1.09 0.97 
0.08 502 0.92 1.10 1.14 
0.09 385 0.90 1.11 1.14 
0.10 284 0.87 1.12 1.05 
0.12 135 0.83 1.13 0-82 
0.14 117 0.78 1.15 0.92 
0.16 85 0.75 1.17 0.90 
0.18 42 0.72 1.18 0.58 
0.20 43 0.67 1.20 0.77 

us in an earlier report  (Caticha-Ellis & Cochran, 1957) ; 
this was due to a mis take  in calculation.) 

Since faults  in each of three directions are equal ly  
probable,  but  only one layer of atoms in four should 
be silicon to produce a uni t  cell of side 4a/3, the 
atomic concentrat ion of silicon required to give the 
above value of o¢ is approximate ly  8 x 10 -4. The con- 
centration of silicon in each of two diamonds  ex- 
hibi t ing strong spikes did not  exceed 10 -5 (Lowde, 
pr ivate  communication).  In  fact it  seems unl ikely 
tha t  any  impur i ty  can be present in sufficient con- 
centration to explain the spikes. I t  has been suggested 
by  Dr A. R. Stokes (private communicat ion) tha t  the 
format ion of double bonds between carbon atoms 
might  be invoked to explain the spikes. Fig. 2(a) 
shows the ar rangement  of carbon atoms in a (110) 
plane. If  an extra layer of carbon atoms is introduced 
as shown in Fig. 2(b) and the distance 3-4 is made 
1.25 J~, a displacement (~ = 0.35a results. The arrange- 
ment  is very  unsatisfactory,  since if CaC 4 is a double 
bond, atoms 1 . . . 6  should be coplanar. This diff iculty 
m a y  be overcome by  postulat ing the ar rangement  
shown in Fig. 2 (c), which gives d -- 0.7a, again taking 
the double-bond length as 1.25 A, which is in any  case 
ra ther  short. This value of d gives the same spike 
magnitudes,  but  the replacement  of sin s ½~(I+R)  in 
column 4 of Table 1 by  sin ~' ~-~(1 +R)  gives a greater 
spread of values of ~. The ar rangement  is not plau- 
sible, and lacks confirmatory evidence, so we must  
conclude tha t  we have no sat isfactory physical  ex- 
p lanat ion of the defects. 

We would like to express our appreciat ion of the 
help we have  had  from Dr Grenville-Wells, and from 
Dr Kartha. 

APPENDIX 

We consider here the effect of allowing the displace- 
ment  d to occur between any  of the four layers of 
atoms parallel  to (001). Each layer is face-centred, and  
taking the origin of layer 0 to be at (x, y ) =  (0, 0) 
the three subsequent layers at z = ~, ½ and ~ respec- 
t ively are related to layer 0 by  translat ions to (x, y) = 
(~:, ¼), (0, ½) and ( - ~ ,  I) respectively. For diamond,  
the systematic  absences are those for a face-centred 
cubic lattice, bu t  addi t ional  absences occur for 
h + k + l = 4 n + 2 .  For even indices F - - 8 f ,  for odd 
indices F = 8f/V2. This recapi tulat ion is necessary in  
order to demonstra te  tha t  the defects do not produce 
spikes associated with points for which F - - 0 .  Let  
Fn be the structure factor of the n th  layer  of a toms;  
it can assume four dist inct  values. Let dn be the dis- 
tance now of the n th  layer along [001] from the crystal  
origin, and let b = ¼a+fld be the mean  distance be- 
tween layers. The probabi l i ty  of a faul t  per layer, fi, 
is approximate ly  ~ ,  since ~ < 1. The number  of 
layers is 4N 3. We thus have 

4N3--1 4N3--1 
IGI 2 = K 2 ~v F~ exp [2~i~dn] Z F *  exp [ -2zd~d~] .  

0 o 
(A~) 

Defining q(~) appropriately,  i.e. 

q(¢) = exp [-2~iflri~](fl exp [2zid¢]+ (1-f l ) )  (A2) 

and Q(¢) = q(¢) exp [2~ib~],  

we f ind tha t  

l a l  ~ = 4KSN3{Ao+A1Q(¢)+A2Q(¢)2+... 
÷A~Q*(~)+A~Q*($)~÷.. .} ,  (AS) 

where 

Ao 1 • • = -~(FoF o + F1F~ + FsF* + FaF*) = F2o, 
A1 i * * * * = ~(F o F i + F i F s + F 2  F3+F3 Fo) • 

A~. and A 3 are s imilar ly defined, A 4 = A0, A 5 = Ai,  
etc. Remember ing  tha t  F 1 = F 0 exp [2~i(h+k)/4], etc., 
one finds there are four si tuat ions:  

(i) h + k  odd: F 0 = 0; there is no intensi ty.  
(ii) h + k  divisible by  4: A o = A 1 = A~ = As. 

(iii) h even, k even, but  h + k  not divisible by  4: 
A i = A 8 = - A o ;  As = A o. 

(iv) h odd, k odd: A i = A  3 = 0 ;  A ~ =  - A  o. 

For case (ii), the sums in (AS) can be evaluated as 
before, and we f ind eventual ly  

sins N l ~ a  sin~ N2~ua 4Nail sin~ ~ (A4) 
[G] ~" -- F~ sins ~$a sin e zer]a- s i n  s (z~a/4) " 

I t  follows tha t  there is a spike only when 1 is divisible 
by  4, and under  (ii) this is also the condition for a 
Bragg reflexion. For such reflexions F 0 = ¼F, and, 
replacing sin (~$a/4) by  ~ a / 4  and remembering tha t  
f i = l  ~a, we see tha t  (A4) reduces to the same result  
numerical ly  as (9). 
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To find wha t  happens  when (iii) holds, we define 

c o  

X(~, ~) = Z q(~, ~)n exp [27r in~] .  
1 

Under  condition (ii), therefore, 

IGI 2 = 4K2F~2/3(1 + X + X * ) ,  

whereas under  condition (iii) 

]GI2 -_ 4K2F2oN3(1 + Y+ Y*) , 
where 

c o  

y(~,  ~) _- ~ (_ l )nq(5 ,  ~)n exp [2~ib~]. 
1 

P u t  ~' = ~+1/2b and define (~' so t h a t  ~ -- r)'~'. We 
note t ha t  q is a funct ion of the product  ~ (see (A2)). 

Then 
c o  

= 5' ~')" Y(~, $) ,X q( , exp [2Jrinb~'] = X(5 ' ,  $ ' ) .  
1 

The net  result  is t h a t  for IGI 2 under  (ifi), we have  

A N D  W.  COCHI=tAN 249 

the  same function as under  (ii), bu t  displaced by  an 
amount  1/2b __ 2/a in ~, so t ha t  spikes occur only a t  
1 = 2, 6, 10 . . . . .  Under  (iii), those are the  points for 
which Bragg reflexions occur. The spike magni tude  
is found to be as before. 

A similar t r e a tmen t  applies to case (iv). I t  is found 
tha t  the spike intensi ty  IGI ~ is a factor  2 less t han  
above;  the spike magni tude  is, however,  the  same 
since these are the reflexions for which F is a factor  
]/2 less. 
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T h e  C r y s t a l  S t r u c t u r e  of  D i p h e n y l t e l l u r i u m  D i b r o m i d e *  
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Diphenyltellurium dibromide crystallizes with the space-group symmetry  I41. There are four 
molecules of (C6Hs)2TeBr2 in the unit cell for which a = 11.421:k0.010/k and c = 9.817:k0-010 A. 
The trial structure was determined by means of two-dimensional Patterson and Fourier syntheses 
and refined by means of three-dimensional Fourier syntheses and the least-squares routine on 
SWAC. The observed bond distances are 2.682-4-0.003 • for Te-Br and 2.14:k0.03 A for Te-C, 
while the observed bond angles are 178-0±0-2 ° for Br -Te-Br  and 96-3-4-1-2 ° for C-Te-C. Packing 
distances are all consistent with accepted van der Waals radii. 

Introduction 

X - r a y  diffraction studies of a number  of diarylselenium 
dihalides have  shown tha t  the  molecules of these sub- 
stances involve near ly  linear X - S e - X  bonds with the 
Se-C bonds in a plane perpendicular  to the  axis of 
the halogen a toms (McCullough & Hamburger ,  1941, 
1942; McCullough & Marsh, 1950). An interesting 
feature  of the  s t ruc ture  is the  observed selenium- 
halogen bonded distance, which is approximate ly  0.2 A 
longer t han  the  sum of the  single covalent  bond radii  
of the  a toms involved (McCullough, 1953). By  con- 

* This research was sponsored, in its early part, by the 
Office of Ordnance Research of the U.S. Army under Contract 
Number DA-04-495-Ord-305 and, in its conclusion, by the 
National Science Foundation under Research Grant NSF-G 
2354. 

t ras t ,  the  observed se lenium-carbon distance appears  
to be normal.  

The invest igat ion of s t ructures  of the  type  R2TeXe 
is of interest,  both  as a na tu ra l  extension of the  above 
studies of selenium compounds and because of the  
general lack of detailed s t ructura l  studies of com- 
pounds of te t racovalent  tellurium. Pre l iminary  X - r a y  
diffraction studies of several compounds of the  above 
type  indicated t ha t  diphenyltel lur ium dibromide with 
only one-half molecule in the asymmetr ic  unit  was 
most  promising. 

Crystal lographic  d a t a  

Diphenyl te l lur ium dibromide was prepared  by  Mr 
N. J .  Kri lanovich by  the  method of Kra f f t  & Lyons  
(1894). The mater ia l  was purified by recrystal l izat ion 

18" 


